Self-stabilizing Virtual Synchrony
نویسندگان
چکیده
Virtual synchrony (VS) is an important abstraction that is proven to be extremely useful when implemented over asynchronous, typically large, message-passing distributed systems. Fault tolerant design is critical for the success of such implementations since large distributed systems can be highly available as long as they do not depend on the full operational status of every system participant. Self-stabilizing systems can tolerate transient faults that drive the system to an arbitrary unpredictable configuration. Such systems automatically regain consistency from any such configuration, and then produce the desired system behavior ensuring it for practically infinite number of successive steps, e.g., 2 steps. We present a new multi-purpose self-stabilizing counter algorithm establishing an efficient practically unbounded counter, that can directly yield a self-stabilizing Multiple-Writer Multiple-Reader (MWMR) register emulation. We use our counter algorithm, together with a selfstabilizing group membership and a self-stabilizing multicast service to devise the first practically stabilizing VS algorithm and a self-stabilizing VS-based emulation of state machine replication (SMR). As we base the SMR implementation on VS, rather than consensus, the system progresses in more extreme asynchronous settings in relation to consensus-
منابع مشابه
Practically Stabilizing Virtual Synchrony
Virtual synchrony is an important abstraction that is proven to be extremely useful when implemented over asynchronous, typically large, message-passing distributed systems. Fault tolerant design is a key criterion for the success of such implementations. This is because large distributed systems can be highly available as long as they do not depend on the full operational status of every syste...
متن کاملExtended Virtual Synchrony
We formulate a model of extended virtual synchrony that deenes a group communication transport service for multicast and broadcast communication in a distributed system. The model extends the virtual synchrony model of the Isis system to support continued operation in all components of a partitioned network. The signiicance of extended virtual synchrony is that, during network partitioning and ...
متن کاملSelf-stabilization and Virtual Node Layer Emulations
We present formal definitions of stabilization for the Timed I/O Automata (TIOA) framework, and of emulation for the timed Virtual Stationary Automata programming abstraction layer, which consists of mobile clients, virtual timed machines called virtual stationary automata (VSAs), and a local broadcast service connecting VSAs and mobile clients. We then describe what it means for mobile nodes w...
متن کاملSelf-Stabilizing Message Routing in Mobile ad hoc Networks
We present a self-stabilizing algorithm for routing messages between arbitrary pairs of nodes in a mobile ad hoc network. Our algorithm assumes the availability of a reliable GPS service, which supplies mobile nodes with accurate information about real time and about their own geographical locations. The GPS service provides an external, shared source of consistency for mobile nodes, allowing t...
متن کاملRandomized Self-stabilizing Algorithms for Wireless Sensor Networks
Wireless sensor networks (WSNs) pose challenges not present in classical distributed systems: resource limitations, high failure rates, and ad hoc deployment. The lossy nature of wireless communication can lead to situations, where nodes lose synchrony and programs reach arbitrary states. Traditional approaches to fault tolerance like replication or global resets are not feasible. In this work,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015